IMO Shortlist 1996 problem G2


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let P be a point inside a triangle ABC such that
\angle APB - \angle ACB = \angle APC - \angle ABC.
Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP, BD, CE meet at a point.
Izvor: Međunarodna matematička olimpijada, shortlist 1996