IMO Shortlist 1996 problem G5


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is parallel to EF, and CD is parallel to FA. Let R_{A},R_{C},R_{E} denote the circumradii of triangles FAB,BCD,DEF, respectively, and let P denote the perimeter of the hexagon. Prove that
R_{A} + R_{C} + R_{E}\geq \frac {P}{2}.
Izvor: Međunarodna matematička olimpijada, shortlist 1996