IMO Shortlist 1998 problem G1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular bisectors of the sides AB and CD meet at a unique point P inside ABCD. Prove that the quadrilateral ABCD is cyclic if and only if triangles ABP and CDP have equal areas.
Izvor: Međunarodna matematička olimpijada, shortlist 1998