IMO Shortlist 1998 problem N6


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
For any positive integer n, let \tau (n) denote the number of its positive divisors (including 1 and itself). Determine all positive integers m for which there exists a positive integer n such that \frac{\tau (n^{2})}{\tau (n)}=m.
Izvor: Međunarodna matematička olimpijada, shortlist 1998