IMO Shortlist 1999 problem A1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let n \geq 2 be a fixed integer. Find the least constant C such the inequality

\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C \left(\sum_{i}x_{i} \right)^4

holds for any x_{1}, \ldots ,x_{n} \geq 0 (the sum on the left consists of \binom{n}{2} summands). For this constant C, characterize the instances of equality.
Izvor: Međunarodna matematička olimpijada, shortlist 1999