IMO Shortlist 2000 problem A1
Dodao/la:
arhiva2. travnja 2012. Let

be positive real numbers so that

. Prove that
%V0
Let $a, b, c$ be positive real numbers so that $abc = 1$. Prove that
$$\left( a - 1 + \frac 1b \right) \left( b - 1 + \frac 1c \right) \left( c - 1 + \frac 1a \right) \leq 1.$$
Izvor: Međunarodna matematička olimpijada, shortlist 2000