IMO Shortlist 2001 problem G2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Consider an acute-angled triangle ABC. Let P be the foot of the altitude of triangle ABC issuing from the vertex A, and let O be the circumcenter of triangle ABC. Assume that \angle C \geq \angle B+30^{\circ}. Prove that \angle A+\angle COP < 90^{\circ}.
Izvor: Međunarodna matematička olimpijada, shortlist 2001