IMO Shortlist 2002 problem A4
Dodao/la:
arhiva2. travnja 2012. Find all functions

from the reals to the reals such that

for all real

.
%V0
Find all functions $f$ from the reals to the reals such that $$\left(f(x)+f(z)\right)\left(f(y)+f(t)\right)=f(xy-zt)+f(xt+yz)$$ for all real $x,y,z,t$.
Izvor: Međunarodna matematička olimpijada, shortlist 2002