IMO Shortlist 2002 problem G6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 8,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let n\geq3 be a positive integer. Let C_1,C_2,C_3,\ldots,C_n be unit circles in the plane, with centres O_1,O_2,O_3,\ldots,O_n respectively. If no line meets more than two of the circles, prove that \sum\limits^{}_{1\leq i<j\leq n}{1\over O_iO_j}\leq{(n-1)\pi\over 4}.
Izvor: Međunarodna matematička olimpijada, shortlist 2002