IMO Shortlist 2002 problem N2


Kvaliteta:
  Avg: 4.5
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let n\geq2 be a positive integer, with divisors 1=d_1<d_2<\,\ldots<d_k=n. Prove that d_1d_2+d_2d_3+\,\ldots\,+d_{k-1}d_k is always less than n^2, and determine when it is a divisor of n^2.
Source: Međunarodna matematička olimpijada, shortlist 2002