IMO Shortlist 2002 problem N6
Dodao/la:
arhiva2. travnja 2012. Find all pairs of positive integers
for which there exist infinitely many positive integers
such that
is itself an integer.
Laurentiu Panaitopol, Romania
%V0
Find all pairs of positive integers $m,n\geq3$ for which there exist infinitely many positive integers $a$ such that $$\frac{a^m+a-1}{a^n+a^2-1}$$ is itself an integer.
Laurentiu Panaitopol, Romania
Izvor: Međunarodna matematička olimpijada, shortlist 2002