IMO Shortlist 2003 problem G1


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABCD be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines BC, CA, AB, respectively. Show that PQ=QR if and only if the bisectors of \angle ABC and \angle ADC are concurrent with AC.
Izvor: Međunarodna matematička olimpijada, shortlist 2003