IMO Shortlist 2006 problem G1


Kvaliteta:
  Avg: 4,3
Težina:
  Avg: 6,3
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let ABC be triangle with incenter I. A point P in the interior of the triangle satisfies \angle PBA+\angle PCA = \angle PBC+\angle PCB. Show that AP \geq AI, and that equality holds if and only if P=I.
Izvor: Međunarodna matematička olimpijada, shortlist 2006