IMO Shortlist 2006 problem N4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial Q(x) = P(P(\ldots P(P(x)) \ldots )), where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.
Izvor: Međunarodna matematička olimpijada, shortlist 2006