IMO Shortlist 2006 problem N4


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 7.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial Q(x) = P(P(\ldots P(P(x)) \ldots )), where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.
Source: Međunarodna matematička olimpijada, shortlist 2006