IMO Shortlist 2008 problem A1


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Find all functions f: (0, \infty) \mapsto (0, \infty) (so f is a function from the positive real numbers) such that
\frac {\left( f(w) \right)^2 + \left( f(x) \right)^2}{f(y^2) + f(z^2) } = \frac {w^2 + x^2}{y^2 + z^2}
for all positive real numbes w,x,y,z, satisfying wx = yz.


Author: Hojoo Lee, South Korea
Izvor: Međunarodna matematička olimpijada, shortlist 2008