IMO Shortlist 2010 problem A7


Kvaliteta:
  Avg: 4,0
Težina:
  Avg: 9,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers, and s be a positive integer, such that
a_n = \max \{ a_k + a_{n-k} \mid 1 \leq k \leq n-1 \} \ \textrm{ for all } \ n > s.
Prove there exist positive integers \ell \leq s and N, such that
a_n = a_{\ell} + a_{n - \ell} \ \textrm{ for all } \ n \geq N.

Proposed by Morteza Saghafiyan, Iran
Izvor: Međunarodna matematička olimpijada, shortlist 2010