IMO Shortlist 2010 problem C4
Kvaliteta:
Avg: 0,0Težina:
Avg: 7,0 Each of the six boxes , , , , , initially contains one coin. The following operations are allowed
Type 1) Choose a non-empty box , , remove one coin from and add two coins to ;
Type 2) Choose a non-empty box , , remove one coin from and swap the contents (maybe empty) of the boxes and .
Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes , , , , become empty, while box contains exactly coins.
Proposed by Hans Zantema, Netherlands
Type 1) Choose a non-empty box , , remove one coin from and add two coins to ;
Type 2) Choose a non-empty box , , remove one coin from and swap the contents (maybe empty) of the boxes and .
Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes , , , , become empty, while box contains exactly coins.
Proposed by Hans Zantema, Netherlands
Izvor: Međunarodna matematička olimpijada, shortlist 2010