IMO Shortlist 2011 problem A1


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Given any set A = \{a_1, a_2, a_3, a_4\} of four distinct positive integers, we denote the sum a_1 +a_2 +a_3 +a_4 by s_A. Let n_A denote the number of pairs (i, j) with 1 \leq  i < j \leq 4 for which a_i +a_j divides s_A. Find all sets A of four distinct positive integers which achieve the largest possible value of n_A.

Proposed by Fernando Campos, Mexico
Izvor: Međunarodna matematička olimpijada, shortlist 2011