IMO Shortlist 2012 problem A3


Kvaliteta:
  Avg: 3.7
Težina:
  Avg: 6.7
Dodao/la: arhiva
Nov. 3, 2013
LaTeX PDF
Let n\ge 3 be an integer, and let a_2,a_3,\ldots ,a_n be positive real numbers such that a_{2}a_{3}\cdots a_{n}=1. Prove that
(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.

Proposed by Angelo Di Pasquale, Australia
Source: Međunarodna matematička olimpijada, shortlist 2012